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Abstract

Our 24-month study used metagenomics to investigate antimicrobial resistance (AMR)

abundance in raw sewage from wastewater treatment works (WWTWs) in two municipalities

in Gauteng Province, South Africa. At the AMR class level, data showed similar trends at all

WWTWs, showing that aminoglycoside, beta-lactam, sulfonamide and tetracycline resis-

tance was most abundant. AMR abundance differences were shown between municipali-

ties, where Tshwane Metropolitan Municipality (TMM) WWTWs showed overall higher

abundance of AMR compared to Ekurhuleni Metropolitan Municipality (EMM) WWTWs.

Also, within each municipality, there were differing trends in AMR abundance. Notably,

within TMM, certain AMR classes (macrolides and macrolides_streptogramin B) were in

higher abundance at a WWTW serving an urban high-income area, while other AMR clas-

ses (aminoglycosides) were in higher abundance at a WWTW serving a semi-urban low

income area. At the AMR gene level, all WWTWs samples showed the most abundance for

the sul1 gene (encoding sulfonamide resistance). Following this, the next 14 most abundant

genes encoded resistance to sulfonamides, aminoglycosides, macrolides, tetracyclines and

beta-lactams. Notably, within TMM, some macrolide-encoding resistance genes (mefC,

msrE, mphG and mphE) were in highest abundance at a WWTW serving an urban high-

income area; while sul1, sul2 and tetC genes were in highest abundance at a WWTW serv-

ing a semi-urban low income area. Differential abundance analysis of AMR genes at

WWTWs, following stratification of data by season, showed some notable variance in six

AMR genes, of which blaKPC-2 and blaKPC-34 genes showed the highest prevalence of sea-

sonal abundance differences when comparing data within a WWTW. The general trend was

to see higher abundances of AMR genes in colder seasons, when comparing seasonal data

within a WWTW. Our study investigated wastewater samples in only one province of South

Africa, from WWTWs located within close proximity to one another. We would require a

more widespread investigation at WWTWs distributed across all regions/provinces of South
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Africa, in order to describe a more comprehensive profile of AMR abundance across the

country.

Introduction

Antimicrobial resistance (AMR) is a major global healthcare problem, which affects all coun-

tries regardless of income levels [1–3]. AMR has been recognized as a ‘One Health’ problem

[4]. The World Health Organization (WHO) has declared that AMR is one of the top ten

global public health threats facing humanity [5]. Therefore, it is important to have good sur-

veillance systems in place to monitor the global prevalence and spread of AMR. In 2015, the

WHO launched the Global Antimicrobial Resistance Surveillance System (GLASS) to support

its global action plan on AMR [6]. GLASS encourages countries to enroll into its program and

move to surveillance approaches based on systems that include data at multiple levels includ-

ing laboratory, epidemiological, clinical, and population-level data. However, most current

AMR surveillance systems are still focused on a limited number of human pathogens (isolate-

based surveillance) and mainly associated with hospitalized patients [7]. This narrow pathogen

spectrum therefore does not capture all relevant AMR genes. As such, a major proportion of

AMR genes actually goes undetected in the commensal bacterial flora of healthy individuals.

An innovative adjunct to current conventional methodologies for surveillance of AMR in

the human population is that of analysis of raw (untreated) sewage [8]. For surveillance activi-

ties in the human population, raw sewage is a very appealing specimen to work on. Wastewa-

ter-based epidemiology can provide insight into the upstream human population, especially if

the municipal wastewater treatment works (WWTW) mainly receives domestic wastewater

without significant contributions from other sources like farming and agriculture. Also, there

are no ethical concerns associated with analysis of sewage, as data cannot be linked to any indi-

vidual. Raw sewage is already well-described as a good specimen on which pathogen surveil-

lance activities can be conducted. These include surveillance for polio [9–11] and more

recently for SARS-CoV-2 [12,13]. However, most of these types of sewage surveillance activi-

ties target a single or limited set of pathogens. The more comprehensive approach to raw sew-

age analysis for investigation of both pathogen and AMR presence (and abundance) is a

metagenomics analysis approach. Metagenomics is a culture-independent methodology that

involves the direct sequencing of mixed genomic (genetic) material present in a sample [14].

Over recent years, the application of metagenomics analysis of raw sewage for investigation

of AMR, has gained traction, with numerous publications describing use of the technology

[15–20]. Hendriksen et al [15] performed a global analysis of sewage from 79 sites in 60 coun-

tries; to show that systematic differences in abundance and diversity of AMR genes exist in

Europe/North-America/Oceania versus Africa/Asia/South-America. Petersen et al [17] per-

formed an analysis of toilet waste from 18 international airplanes arriving in Copenhagen

International Airport from nine cities in three world regions; to show that a higher abundance

and diversity of AMR genes are carried on airplanes from South Asia as compared to North

America. In low- and middle-income countries, there is a lack of wastewater metagenome data

which prevents comparable surveillance studies. Particularly, very few African laboratories

have applied metagenomics sequencing to investigate raw sewage and wastewater, thus, pub-

lished sewage metagenomic data from Africa is limited. Some publications out of Africa only

report on the use of metagenomics data to describe the prevalence of microbial populations

[21], while other publications have extended on analysis of metagenomics data to describe the
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prevalence and abundance of AMR [22–25]. Overall, in Africa very little is known about the

presence, diversity and abundance of AMR in raw sewage. Martiny et al [26] reported limited

metagenomics data coming out of African countries; they investigated all metagenomics data

in the public repositories of genomic data to find that the sampling location of data is mas-

sively skewed towards European and North American countries.

In this study, we describe a 2-year longitudinal study which included a metagenomics anal-

ysis of raw untreated sewage received at four WWTW in the Gauteng Province of South Africa

—these included two WWTW servicing semi-urban low-income areas and two WWTWs ser-

vicing urban high income areas. The study period ran for 24 months from December 2020 to

November 2022, and included monthly sewage sampling and metagenomic analyses of the

resistome. To the best of our knowledge, this is the first study of its kind from South Africa.

Materials and methods

Study setting

This study was set in two metropolitan municipalities (Ekurhuleni and Tshwane) located in

the Gauteng Province of South Africa (https://www.arcgis.com/home/item.html?id=

1976f2e85e43497b8cc2b14ab7a8400c), to include a total of four WWTWs. Written permis-

sions were obtained from municipalities in order for us to conduct this study. Service level

agreements (including all permissions) were signed with the Ekurhuleni Water Care Com-

pany, Ekurhuleni Metropolitan Municipality (EMM) and the Utility Services Department,

Tshwane Metropolitan Municipality (TMM). The two metropolitan municipalities were

within close proximity (~60 km) to one another. The EMM included a WWTW which serves a

semi-urban low-income area (named, EMM semi-urban) and a WWTW which serves an

urban high-income area (named, EMM urban). The TMM included a WWTW which serves a

semi-urban low-income area (named, TMM semi-urban) and a WWTW which serves an

urban high income area (named, TMM urban). Table 1 summarizes details of the four selected

WWTW, the geographical area served by the WWTW and metadata for the population living

within these areas.

For the TMM, wastewater feeding into the WWTW are sourced only from sewer networks

connected to homes, business and industry. So, in theory, there should be no wastewater run-

off from the environment. However, illegal connections to the sewer networks do sometimes

occur, so one cannot completely exclude the possibility of environmental wastewater run-off

into the sewer network. For the EMM, the sewage network is a combined system, meaning

that storm water and other environmental wastewater run-off can flow into the sewer

network.

Raw untreated sewage sample collection

Raw untreated sewage samples were collected from the WWTWs over the period December

2020 to November 2022, with collections occurring on the first Tuesday morning of each

month. One litre volumes of sewage samples were collected at the inlet of the WWTW. Sam-

ples were packaged into cooler boxes (with ice packs) and transported (for ~2 hours) to the

Centre for Enteric Diseases (CED) at the National Institute for Communicable Diseases

(NICD). Upon receipt at CED, sewage samples were stored at 4˚C, for up to 24 hours.

DNA extraction from sewage samples

Within 24 hours of receipt of a sewage sample, it was processed to extract genomic DNA.

Two-hundred and fifty millilitre (250 ml) of sample was processed using the QIAamp Fast
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DNA Stool Mini Kit (QIAGEN, Hilden, Germany) including bead beating, as per the method

described by Knudsen et al [27]. The quantity and quality of DNA extractions were measured

using a NanoDrop 1000 spectrophotometer (Thermo Scientific, Waltham, MA, USA). DNA

extractions (in 1.5 ml tubes) were stored in a plastic box at a temperature of -20˚C.

Metagenomics sequencing

The box with tubes of frozen DNA samples were moved to a biosafety transport

box containing dry ice, and the box was shipped to Admera Health Biopharma Services, South

Plainfield, NJ, USA, for shotgun metagenomics sequencing of the DNA samples. Libraries

were prepared using the KAPA HyperPrep PCR-free Kit (Roche Diagnostics Corporation,

Indianapolis, IN, USA). Sequencing was performed using an Illumina NovaSeq (Illumina, San

Diego, CA, USA) using paired-end (PE) 2 x 150-bp reads. We targeted 70 million reads (35

million PE reads) per sample, which resulted in ~11 Gb of raw sequencing data per sample.

Quality inspection of raw reads was performed using FastQC and MultiQC [28]. Raw reads

were trimmed (including adaptor removal) using BBDuk (https://jgi.doe.gov/data-and-tools/

software-tools/bbtools/) with a minimum Phred quality score of 20 and minimum length of 50

bp. Trimmed reads were then used as input data for downstream analyses.

Table 1. Summary of metadata for the geographical area and human population served by the WWTWs.

Name of WWTW TMM semi-urban TMM urban EMM semi-urban EMM urban

Location of WWTW

(Province, Municipality)

Gauteng Province, Tshwane

Municipality

Gauteng Province, Tshwane

Municipality

Gauteng Province,

Ekurhuleni Municipality

Gauteng Province, Ekurhuleni

Municipality

Areas serviced by the

WWTW

Soshanguve, Mabopane Waverley, Brummeria, Silverton,

Hillcrest, Colbyn, Hatfield,

Waterkloof, Menlo Park

Tsakane Farramere, Alphen Park, Lakefield,

Westdene, Northmead, Rynfield,

Morehill, Airfield

Type of living area Semi-urban area Urban area Semi-urban area Urban area

Economic income of the

area

Low income High income Low income High income

Annual household income

of the population

R19,601—R38,200 (mostly) R153,801—R307,600 (mostly) R19,601—R38,200 (mostly) R153,801—R307,600 (mostly)

Education of the

population

35% (secondary-level high

school); 10.4% (tertiary level)

36.5% (secondary-level high

school); 42.4% (tertiary level)

31.9% (secondary-level high

school); 7% (tertiary level)

38.8% (secondary-level high

school); 23.9% (tertiary level)

% of the population with

access to private medical

aid

Low (~9%) High (42%) Low (~9%) High (37%)

% of households with

piped water inside their

dwellings

58.7% 94.1% 59.9% 79.7%

% of households with flush

toilets connected to the

sewer

85.3% 96.2% 96.3% 81.9%

% of households with

electricity for lighting

91.9% 97.8% 91.3% 79.5%

% of dwellings which are

formal constructions

73.8% 97.2% 86.7% 85.4%

% of households that

receive weekly refuse

removal

87.1% 94.9% 97.4% 86.5%

Race group represented by

the population

99.2% Black African; 0.1%

White; 0.3% coloured; 0.1%

Indian/Asian

42% Black African; 52.5% White;

2.5% Coloured; 1.9% Indian/Asian

98.8% Black African; 0.2%

White; 0.4% Coloured; 0.2%

Indian/Asian

45.2% Black African; 38.1% White;

2.1% Coloured; 13.9% Indian/

Asian

https://doi.org/10.1371/journal.pone.0309409.t001
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Analysis of metagenomics sequencing data

In order to quantify the AMR genes in the metagenomes, we used the KMA tool to align reads

against the ResFinder database (accessed January 2023) [29,30]. Briefly, KMA uses a seed-and-

extend strategy of first mapping reads based on exact-matching k-mers and then calculates

exact alignment scores for the assignment of query sequences to reference sequences. It then

utilizes a “winner takes it all” approach to identify the most parsimonious sources in even

highly redundant databases. For bacterial quantification, trimmed sequencing reads were

aligned to the SILVA database of ribosomal RNA sequences (accessed January 2023) (https://

www.arb-silva.de/), using the KMA tool [31].

Normalization of read counts, calculation of relative abundance, and

analysis of data

KMA mapstat files (produced with the “extended feature” flag) which summarize the mapping

and alignment results were saved for all samples. The relative abundance for AMR was calcu-

lated as follows: the number of ResFinder-aligned sequence fragments were adjusted to gene-

length (kilobases) and the number (millions) of bacterial fragments assigned in each metagen-

ome to obtain the Fragments per Kilobase gene per Million bacterial fragments (FPKM) as

previously described [32].

Relative abundance data were further analyzed and visualized using R Software version

4.3.0 and RStudio Software version 2023.06.1+524 (https://posit.co/download/rstudio-

desktop/). Statistical analysis of data was performed using the Wilcoxon rank-sum test, includ-

ing a p-value cutoff of 0.05.

Alignment counts to the ResFinder database, were further analyzed using DESeq2 [33], to

test for differential abundance of AMR genes between sites. The following DESeq2 parameters

were used: estimateSizeFactors with type set to “poscounts” and the Wald test was used with

fitType set to “parametric”. We used an adjusted p value (q-value) of 0.1 to determine signifi-

cant abundance between sites during different seasons. Volcano plots were used to visualize

differential abundance analysis results.

Results

The number of reads per sequenced sample was ~70 million reads (range: 65–75 million). On

average, 0.05% of the reads per sample aligned to AMR genes at the ResFinder database, while

0.25% of the reads per sample aligned to bacterial 16S rRNA genes at the SILVA database. In

total, there were alignments to 1523 AMR genes and 454 bacterial families.

On average, collected sewage samples showed the most abundance for AMR genes belong-

ing to the following four classes: aminoglycosides, beta-lactams, sulfonamides and tetracy-

clines. This AMR class trend was consistent at all study sites over the 24-month study period

(Figs 1 and 2). Stratifying by metropolitan municipality, the TMM showed an overall higher

abundance of AMR as compared to the EMM (p = 0.035). This was particularly notable when

looking at the most abundant AMR classes, in particular the aminoglycosides, sulfonamides,

beta-lactams, tetracyclines and macrolides (Fig 3). Looking at these most abundant AMR clas-

ses, the aminoglycosides (p = 0.006), sulfonamides (p = 0.019) and macrolides (p = 0.047)

showed overall higher abundance at the TMM as compared to EMM (with statistically signifi-

cant differences); while for beta-lactams (p = 0.863) and tetracyclines (p = 0.945), the overall

higher abundance at the TMM as compared to EMM was not statistically significant (Fig 3).

Stratifying within metropolitan municipality, comparing WWTWs which serve semi-urban

low-income areas with WWTWs which serve urban high income areas, we showed the
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following results. Over the 24-month study period, no statistically significant difference was

noted for total AMR abundance at the TMM semi-urban WWTW as compared to the TMM

urban WWTW (p = 0.797). However, looking at the most abundant AMR classes, the TMM

semi-urban WWTW showed a higher abundance of aminoglycosides (p = 0.007) as compared

to the TMM urban WWTW (Fig 4). In contrast, there was a higher abundance of macrolides

(p = 0.016) and macrolides_streptogramin B (p = 0.006) at the TMM urban WWTW as com-

pared to TMM semi-urban WWTW. No statistically significant differences in abundance were

noted for sulfonamides (p = 0.056), beta-lactams (p = 0.059) and tetracyclines (p = 0.062) (Fig

4). The situation looked somewhat different at the second municipality (EMM). The EMM

urban WWTW showed an overall higher total abundance of AMR as compared to the EMM

semi-urban WWTW (p = 0.040). Looking at the most abundant AMR classes, the EMM urban

WWTW showed a higher abundance of aminoglycosides (p< 0.001), beta-lactams (p = 0.044)

Fig 1. AMR class abundance, showing abundance data from samples sourced at each WWTW, by month of sampling.

https://doi.org/10.1371/journal.pone.0309409.g001
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and sulfonamides (p = 0.005) as compared to the EMM semi-urban WWTW (Fig 5). For other

AMR classes, including tetracyclines (p = 0.489) and macrolides (p = 0.975), no statistically sig-

nificant differences in abundance were noted (Fig 5).

At the AMR gene level, on average, samples showed the most abundance for the sul1 gene

(encoding sulfonamide resistance)—thereafter, the next most abundant 14 AMR genes

included a range of genes encoding resistance to sulfonamides, aminoglycosides, macrolides,

tetracyclines and beta-lactams (Fig 6). These 15 most abundant AMR genes accounted for 48%

of all AMR genes detected in the collected samples (out of a total AMR gene count of 1523)

(Fig 6). Stratifying within metropolitan municipality, comparing WWTWs which serve semi-

Fig 2. AMR class abundance, showing abundance data by month of sampling, from samples sourced at each WWTW.

https://doi.org/10.1371/journal.pone.0309409.g002
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urban low-income areas with WWTWs which serve urban high-income areas, we showed the

following results. For some AMR genes (sul1, sul2 and tetC); the TMM semi-urban WWTW

showed an overall higher abundance of AMR as compared to the TMM urban WWTW [sul1-

AY963803 (p = 0.005), sul2-AY034138 (p<0.001) and tetC-AY046276 (p<0.001)] (Fig 7).

However, for other AMR genes (mefC, msrE, mphG and mphE); the TMM urban WWTW

showed an overall higher abundance of AMR as compared to the TMM semi-urban WWTW

[mefC-AB571865 (p = 0.003), msrE-FR751518 (p = 0.005), mphG-AB571865 (p = 0.003) and

mphE-DQ839391 (p = 0.016)] (Fig 7). Once again, the situation looked somewhat different at

the second municipality the EMM. For the EMM semi-urban WWTW and EMM urban

WWTW, overall AMR gene abundance data (for the 15 most abundant AMR genes) were

mostly homogeneous at the two WWTW (Fig 8). As an example, no statistically significant dif-

ferences in AMR gene abundance data was noted for sul1-AY963803 (p = 0.261), sul1-U12338

(p = 0.088) and mphE-DQ839391 (p = 0.088). Notable exceptions included msrE-FR751518

(p = 0.049) and tetC-AY046276 (p< 0.001) that showed some higher abundance at the EMM

urban WWTW as compared to the EMM semi-urban WWTW (Fig 8).

Finally, a differential abundance analysis of the AMR genes was performed. For each indi-

vidual WWTW, data were compared between seasons. The TMM WWTWs showed some

notable variance in AMR gene abundance between seasons, while the EMM WWTWs showed

little variance (Table 2). In total, significant seasonal abundance differences were found for

only six AMR genes, which included: blaKPC-2 beta-lactamase gene (AY034847), blaKPC-34

Fig 3. Total AMR class abundance, showing abundance data for the TMM WWTWs as compared to the EMM WWTWs. Only the top nine most abundant AMR

classes are shown.

https://doi.org/10.1371/journal.pone.0309409.g003

PLOS ONE Metagenomics analysis of sewage

PLOS ONE | https://doi.org/10.1371/journal.pone.0309409 August 26, 2024 8 / 19

https://doi.org/10.1371/journal.pone.0309409.g003
https://doi.org/10.1371/journal.pone.0309409


beta-lactamase gene (KU985429), blaOXA-334 beta-lactamase gene (KF203108), all encoding

resistance to carbapenems; blaNPS-1 beta-lactamase gene (AY027589) encoding resistance to

beta-lactams; aac(6’)-Ib-Hangzhou gene (FJ503047), aac(3)-Ia gene (X15852), both encoding

resistance to aminoglycosides (Table 2, Fig 9). Among these six AMR genes, the blaKPC-2 and

blaKPC-34 genes showed the highest prevalence of seasonal abundance differences when com-

paring data within a WWTW.

Discussion

Sewage samples showed the most abundance for AMR genes belonging to the following four

classes: aminoglycosides, beta-lactams, sulfonamides and tetracyclines. This AMR class trend

was consistent at all study sites over the 24-month study period. These results are in agreement

with a global study of urban sewage which found that for the Africa/South America/Asia

regions, the highest abundance of AMR genes were associated with tetracyclines, aminoglyco-

sides, beta-lactams, sulfonamides and trimethoprim [15]. Stratifying by metropolitan munici-

pality, the TMM showed an overall higher abundance of AMR as compared to the EMM.

The high levels of sulfonamide AMR gene abundance observed were not surprising, as it

correlates with the extensive usage of co-trimoxazole which forms part of therapy for HIV-pos-

itive patients in South Africa’s huge antiretroviral program [34–36]. Also, sulfonamides are

widely used to treat a wide variety of bacterial infections and some fungal infections, and in

particular urinary tract infections. High levels of beta-lactam AMR gene abundance observed

Fig 4. Total AMR class abundance, showing abundance data for the TMM urban WWTW as compared to the TMM semi-urban WWTW. Only the top nine most

abundant AMR classes are shown.

https://doi.org/10.1371/journal.pone.0309409.g004
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correlates well with the beta-lactams penicillin, amoxicillin and amoxicillin/clavulanic acid

being the leading prescribed antimicrobial class in South Africa. Also, globally, beta-lactams

are the most widely prescribed antimicrobial and is used to treat a wide variety of bacterial

infections [37]. High levels of aminoglycoside AMR gene abundance observed could be

ascribed to the recent global resurrection and resurgence in aminoglycoside use for the treat-

ment of mostly Gram-negative bacterial infections (and some Gram-positives) in humans and

animals. Aminoglycosides particularly combine well and show good synergy with other anti-

microbials, particularly with the beta-lactams, and this provides expanded effectiveness for the

treatment of multidrug-resistant organisms [38–40]. High levels of tetracycline AMR gene

abundance correlates with an antimicrobial class that is frequently employed as a therapeutic

option in human and animal healthcare due to their broad spectrum of activity, as well as their

low cost as compared to other antimicrobials. In addition to therapeutic purposes, tetracy-

clines are among the most common antimicrobials used as growth promoters in the practice

of farming food-producing animals (livestock, poultry, etc.) [41,42].

Stratifying within metropolitan municipality, comparing WWTWs which serve semi-urban

low-income areas with WWTWs which serve urban high income areas, we noticed some dif-

ferences in total AMR class abundance data. For the AMR classes macrolides and macrolides_-

streptogramin B; the TMM urban WWTW showed an overall higher abundance of AMR

genes as compared to the TMM semi-urban WWTW. This was not surprising, as urban areas

are more associated with private healthcare, where the more expensive antimicrobials (like

macrolides) are prescribed [37,43,44]. Affluent persons living in urban high-income areas

often expect and even demand prescription of antimicrobials, even if not required (like for

Fig 5. Total AMR class abundance, showing abundance data for the EMM urban WWTW as compared to the EMM semi-urban WWTW. Only the top

nine most abundant AMR classes are shown.

https://doi.org/10.1371/journal.pone.0309409.g005

PLOS ONE Metagenomics analysis of sewage

PLOS ONE | https://doi.org/10.1371/journal.pone.0309409 August 26, 2024 10 / 19

https://doi.org/10.1371/journal.pone.0309409.g005
https://doi.org/10.1371/journal.pone.0309409


viral infections); they would even demand the most expensive antimicrobials available (like

macrolides), thinking that more expensive must be better. Medical practitioners in private

healthcare are often pressured into meeting the demands of patients, for fear of patients leav-

ing their practice to seek unnecessary medication elsewhere [43,45]. Contrary, for the AMR

class aminoglycosides, the TMM semi-urban WWTW showed an overall higher abundance of

AMR genes as compared to the TMM urban WWTW. This would align with semi-urban areas

which are associated with public healthcare, where prescription is driven by the more afford-

able antimicrobials, like the aminoglycosides [37,46]. Interestingly, as previously mentioned,

the situation looked somewhat different at the second metropolitan municipality (EMM). The

EMM urban WWTW showed an overall higher abundance for some of the predominant AMR

classes (including aminoglycosides, beta-lactams and sulfonamides), as compared to the EMM

semi-urban WWTW. For other AMR classes (including tetracyclines and macrolides), no sig-

nificant differences in abundance were noted.

Fig 6. AMR gene abundance, showing abundance data from samples sourced at each WWTW, by month of sampling. The top 15 most abundant AMR genes are

shown, while the remainder of the genes are grouped together and shown as ‘Other’.

https://doi.org/10.1371/journal.pone.0309409.g006
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The high prevalence of sulfonamide resistance genes (sul1 and sul2) was not surprising. In

particular, the sul1 gene has previously been reported to show a high prevalence in wastewater

samples from African countries [15,22,25]. Following the sul genes, the tetC gene (encoding

tetracycline resistance) was the next most abundant AMR gene detected among all samples.

AMR genes associated with macrolide resistance also made up a large proportion of the top 15

genes, including msrE, mefC, mphE, mphG and mphA. AMR genes associated with aminogly-

coside resistance also made up a large proportion of the top 15 genes, including ant(3’’)-Ia,

aph(6)-Id, aph(3’’)-Ib and aadA4. Lastly, a blaOXA-10 gene (associated with beta-lactam resis-

tance) encoding an extended-spectrum beta-lactamase (ESBL), completed the top 15 AMR

genes. Among all AMR genes associated with beta-lactam resistance, we found that the gene

which recorded the highest number of read mapping (most detected) was a blaOXA gene

(blaOXA-10). This was somewhat surprising, since globally among ESBL gene classes/variants,

the most prevalent and most described are blaTEM, blaSHV, and blaCTX-M [47,48]. Of concern

with our finding that a blaOXA gene is well detected, is that blaOXA gene variants encode resis-

tance to carbapenems, an antimicrobial considered to be among one of the last options for

patient treatment. Stratifying within metropolitan municipality, for the TMM, AMR gene

abundance data mostly reflected what was observed at the AMR class level. For some AMR

genes associated with resistance to macrolides (mefC, msrE, mphG and mphE), samples from

the TMM urban WWTW showed an overall higher abundance of the AMR genes as compared

to the TMM semi-urban WWTW. Contrary, for some AMR genes associated with resistance

to sulfonamides and tetracyclines (sul1, sul2 and tetC), samples from the TMM semi-urban

Fig 7. Total AMR gene abundance, showing abundance data for the TMM urban WWTW as compared to the TMM semi-urban WWTW. Only the top 15 most

abundant AMR genes are shown.

https://doi.org/10.1371/journal.pone.0309409.g007
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WWTW showed an overall higher abundance of the AMR genes as compared to the TMM

urban WWTW. At the EMM, AMR gene abundance data also reflected what was observed at

the AMR class level. For samples from the EMM semi-urban WWTW and EMM urban

WWTW, overall AMR gene abundance data (for the 15 most abundant AMR genes) were

mostly homogeneous at the two WWTW.

Our final analysis of data included the following. Data from alignment counts were further

analyzed using DESeq2 to perform a differential abundance analysis of the AMR genes. Data

from WWTWs were compared following stratification by season. Summer (included the

months of December, January, February), autumn (included the months of March, April,

May), winter (included the months of June, July, August) and spring (included the months of

September, October, November). For each individual WWTW, data were compared between

seasons. The TMM WWTWs showed some notable variance in AMR gene abundance between

seasons, while the EMM WWTWs showed little variance. In total, significant seasonal abun-

dance differences were found for only six AMR genes, which included: blaKPC-2, blaKPC-34,

blaOXA-334, blaNPS-1, aac(6’)-Ib-Hangzhou, and aac(3)-Ia. Among these six AMR genes, the

blaKPC-2 and blaKPC-34 beta-lactamase genes showed the highest prevalence of seasonal abun-

dance differences when comparing data within a WWTW. The general trend was to see higher

abundances of AMR genes in colder seasons, when comparing seasonal data within a

WWTW, although there were a few exceptions.

Fig 8. Total AMR gene abundance, showing abundance data for the EMM urban WWTW as compared to the EMM semi-urban WWTW. Only the top 15 most

abundant AMR genes are shown.

https://doi.org/10.1371/journal.pone.0309409.g008
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Limitations of our study included the following. Our study should be considered a pilot

investigating the feasibility of a metagenomics approach to investigate AMR gene presence in

wastewater in South Africa. Due to the relatively high cost of metagenomics analysis, our study

could only include a limited number of sewage samples, that of “once a month” grab samples

from WTWWs. For future analysis, it would be best to analyze composite sewage samples

taken daily over an extended period of time. Also, our limited “once a month” grab sampling

does not provide enough data to answer questions related to abundance of AMR genes versus

antimicrobial consumption data. To try and make associations between abundance of AMR

genes and antimicrobial consumption data, a more comprehensive sampling strategy would

be required. Then, even with a more comprehensive sampling strategy, including composite

samples taken daily over an extended time period, it will still remain challenging to attempt

linking abundance of AMR genes to antimicrobial consumption data, because there are lim-

ited stratified municipal/regional antimicrobial consumption data available. Neither the clini-

cal, agricultural, or veterinary sectors are sharing or publishing much of these municipal/

regional data.

Conclusions

Our 24-month study used metagenomics to investigate AMR abundance in raw sewage from

WWTWs in two metropolitan municipalities in the Gauteng Province of South Africa. We

showed a diversity of AMR abundance data in samples from one WWTW as compared to

another WWTW, which highlights the complexities of the AMR ecology. These complexities

are known to include multiple drivers of AMR which include selective pressures associated

with antimicrobial use/abuse and factors (like social and economic factors) which affect the

spread of antimicrobial-resistant microorganisms [49,50]. To some extent, we showed that dif-

ferences in AMR abundance data could be aligned with the socioeconomic status of the

Table 2. Differential abundance data analysis of AMR genes from samples sourced at WWTWs. Data were compared following stratification by season. Summer

(included the months of December, January, February), autumn (included the months of March, April, May), winter (included the months of June, July, August) and

spring (included the months of September, October, November).

TMM semi-urban WWTW TMM urban WWTW EMM semi-urban

WWTW

EMM urban WWTW

Summer

compared to

Winter

blaKPC-2 gene (AY034847) more abundant in Winter;

blaOXA-334 gene (KF203108) more abundant in Winter;

aac(3)-Ia gene (X15852) more abundant in Winter; aac
(6’)-Ib-Hangzhou gene (FJ503047) more abundant in

Winter

No significant abundance difference in

AMR genes

No significant

abundance difference

in AMR genes

No significant

abundance difference

in AMR genes

Spring

compared to

Winter

No significant abundance difference in AMR genes No significant abundance difference in

AMR genes

blaNPS-1 gene

(AY027589) more

abundant in Winter

No significant

abundance difference

in AMR genes

Spring

compared to

Autumn

blaKPC-2 gene (AY034847) more abundant in Spring blaKPC-2 gene (AY034847) more

abundant in Autumn; blaKPC-34 gene

(KU985429) more abundant in Spring

No significant

abundance difference

in AMR genes

No significant

abundance difference

in AMR genes

Autumn

compared to

Winter

blaKPC-2 gene (AY034847) more abundant in Winter blaKPC-2 gene (AY034847) more

abundant in Autumn; blaKPC-34 gene

(KU985429) more abundant in Winter

No significant

abundance difference

in AMR genes

No significant

abundance difference

in AMR genes

Summer

compared to

Autumn

aac(6’)-Ib-Hangzhou gene (FJ503047) more abundant

in Autumn

blaKPC-2 gene (AY034847) more

abundant in Autumn; blaKPC-34 gene

(KU985429) more abundant in

Summer

No significant

abundance difference

in AMR genes

No significant

abundance difference

in AMR genes

Summer

compared to

Spring

blaKPC-2 gene (AY034847) more abundant in Spring;

aac(6’)-Ib-Hangzhou gene (FJ503047) more abundant

in Spring

No significant abundance difference in

AMR genes

No significant

abundance difference

in AMR genes

No significant

abundance difference

in AMR genes

https://doi.org/10.1371/journal.pone.0309409.t002
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population served by the WWTW, as seen for macrolide resistance which showed the highest

abundance in samples from a WWTW serving an urban high-income area. To some extent,

we showed that differences in AMR gene abundance data could be aligned with season, where

the general trend was to see higher abundances of some AMR genes in colder seasons, when

comparing seasonal data within a WWTW.

Our study investigated wastewater samples in only one province of South Africa, from

WWTWs located within close proximity to one another. We would require a more widespread

investigation at WWTWs distributed across all regions/provinces of South Africa, in order to

describe a more comprehensive profile of AMR abundance across the country. Globally,

wastewater surveillance programs are rapidly expanding to elucidate the burden and spread of

multiple pathogens and associated characteristics. The NICD, South Africa already has a coun-

trywide wastewater surveillance program in place which primarily investigates for Polio and

COVID. It would be worthwhile to see this NICD program expand to see the inclusion of sur-

veillance for AMR.

Fig 9. Differential abundance data analysis of AMR genes from samples sourced at the TMM semi-urban WWTW. Data were compared following stratification by

season, here comparing data between the summer and winter periods.

https://doi.org/10.1371/journal.pone.0309409.g009
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